dinu.at bewertung und analyse

Robots.txt Information
Robot Path Permission
GoogleBot /
BingBot /
BaiduSpider /
YandexBot /
Meta Tags
Title Dinu Marius-Constantin –
Description Ensemble Learning for Domain Adaptation by Importance Weighted Least Dinu Marius-Constantin Website Menu --> Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find o
Keywords N/A
Server Information
WebSite dinu favicondinu.at
Host IP 81.19.159.97
Location Austria
Mehr zu entdecken
Site
infinity-institute.de
katharinaalf.de
metteschlimmermann.de
annonature.de
beautyislife.de
becom.ag
bolt-wax-future.com
boulevardtheater-bremen.de
etb-bach.com
hardwarenet.eu
inksters-tattoo.de
lehvoss.ch
michel-form.de
sg-multimedia.de
thees.com
dinu.at bewertung
Euro1,102
Zuletzt aktualisiert: 2022-10-28 17:00:17

dinu.at hat Semrush globalen Rang von 39,177,126. dinu.at hat einen geschätzten Wert von € 1,102, basierend auf seinen geschätzten Werbeeinnahmen. dinu.at empfängt jeden Tag ungefähr 551 einzelne Besucher. Sein Webserver befindet sich in Austria mit der IP-Adresse 81.19.159.97. Laut SiteAdvisor ist dinu.at sicher zu besuchen.

Verkehr & Wertschätzungen
Kauf-/Verkaufswert Euro€1,102
Tägliche Werbeeinnahmen Euro€20,387
Monatlicher Anzeigenumsatz Euro€7,163
Jährliche Werbeeinnahmen Euro€551
Tägliche eindeutige Besucher 551
Hinweis: Alle Traffic- und Einnahmenwerte sind Schätzungen.
DNS Records
Host Type TTL Data
dinu.at. A 3600 IP: 81.19.159.97
dinu.at. NS 21600 NS Record: ns2.world4you.at.
dinu.at. NS 21600 NS Record: ns1.world4you.at.
dinu.at. MX 3600 MX Record: 10 mail.dinu.at.
dinu.at. TXT 3600 TXT Record: v=spf1 mx include:spf.w4ymail.at -all
HtmlToTextCheckTime:2022-10-28 17:00:17
Dinu Marius-Constantin Website Menu --> Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: Cookie Policy Home Resume Newsletter Login About Ensemble Learning for Domain Adaptation by Importance Weighted Least Squares Marius-Constantin Dinu 13. August 2022 0 comments General Abstract We study ensemble learning for unsupervised domain adaptation, i.e., with labeled data in a source domain and unlabeled data in a target domain, drawn from a different input distribution. An open problem is to find an optimal aggregation of given models without making strong assumptions on the model classes. While several heuristics exist, methods are still missing that rely on thorough theories for bounding the target error. In this turn, we propose a method that extends the theory of weighted least squares to linear aggregations and vector-valued functions. Our method is asymptotically
HTTP Headers
HTTP/1.1 302 Found
Date: Fri, 28 Oct 2022 08:41:48 GMT
Server: Apache
Location: http://www.dinu.at/
Content-Type: text/html; charset=iso-8859-1

HTTP/1.1 301 Moved Permanently
Date: Fri, 28 Oct 2022 08:41:49 GMT
Server: Apache
Location: https://www.dinu.at/
Content-Type: text/html; charset=iso-8859-1

HTTP/2 200 
date: Fri, 28 Oct 2022 08:41:49 GMT
server: Apache
expires: Wed, 11 Jan 1984 05:00:00 GMT
cache-control: no-cache, must-revalidate, max-age=0
link: ; rel="https://api.w.org/", ; rel=shortlink
set-cookie: __wpdm_client=d56a3c77f423caf2832a90f2ba202a9d; secure; HttpOnly
content-type: text/html; charset=UTF-8